慧聪芯城 | 慧聪智能硬件网 | 慧聪新能源网 | 慧聪LED网 | 慧聪电气网 | 慧聪电源网 | 慧聪IT网 | 慧聪变频器网
特惠新品微信
投稿
热门推荐:指纹识别 | 八代酷睿 | P30芯片 | Nokia 8 | Pixel 2 | 商营通 | 买芯片 | 晶振 | 采购 | 活动规划

慧聪电子网首页 > 电子元件 > 正文

AMD起步太晚 在AI领域又要被NVIDIA吊打?

http://www.ec.hc360.com2017年07月24日11:50 来源:与非网T|T

    年轻的时候,我很迷恋电子学。无数次,电路没有像预期一样工作,失败让我学到一点:想告诉电子做什么简直就是徒劳。尽管如此,搭建电子控制相控阵天线时我的兴趣达到了最高点。简单来讲,稍微对时间进行调整,无数小天线生成的信号就可以射向特定方向,不需要移动硬件。

    没错,我的装置的确管用,虽然没有预料的那样好。不论怎样,相控阵天线之所以让我兴奋,主要是因为通过对一系列独立发射器的相位和振幅进行独立控制,我们可以塑造辐射方向图。看起来真的很酷。后来,我进入了光学领域,控制独立激光器的相位与振幅,将它们组组合成单一、可操纵的激光束……从技术上讲完全可以做到,但在理想与实际部署之间有许多障碍。

    最近,研究人员已经证实,相位控制在装置中是可以实现的,装置比控制的光线波长还要小。这是一个关键的进步,我们朝着没有光纤的高容量光通信技术前进了一大步。有了这种技术,5G之后的移动通信、家庭Wi-Fi不会再卡了。

    有多难?

    控制大量发射器的振幅与相位听起来很简单。不妨想像一下,你要在Wi-Fi中达成目标。Wi-Fi源的频率是5GHz,也就是说它的波长是6cm。再让我们假设一下,有16根天线,按4x4排列。如果我想控制每一根天线单元的相位,就要确保每一条波束有同样的长度(也就是波长的二十分之一:3mm)。要做到还是相对容易的。

    要控制相位与振幅,接下来还有一件重要的事要做:你要调高或者调低天线单元的功率,在电路上安一些可变电容器,让每一个天线单元实现可变延迟。听起来简单,我想告诉你,英国卫星广播公司(BritishSatelliteBroadcasting)的相控阵天线是假的,由此可以看出,相控阵天线绝非什么容易的技术。

    现在让我们进入光学领域。我们可以选择相对容易的路走,继续使用红外线,它的波长大约是10μm(微米)。这样一来,4x4阵列波束需要的长度大约是500nm(纳米)。看起来可行,但是要记住:如果使用光,重要的不只是波长,还有其它东西。如果波束波长只有40μm,那么波束的折射率变化幅度不能超过1%。波束越长,折射率必须更接近。当波长越来越短,或者发射器的距离越来越远,要达到制造容差的要求也就变得越来越有挑战。

    总之:搭建光相控阵天线是可行的,在控制严密的实验室环境下,我们可以在常态环境中就可以做到;但是并不容易。如果想改变每一个阵列单元光束的相位和振幅,现在还无法做到。

    移相器

    改变光场的相位是相当容易的事,只需要让光跑远一点抵达目的地或者跑慢一点就行了。要做到有两种方法:一,从物理上拉伸光传输的路径,二,光会穿过材料,我们可以改变材料的折射率。后一种方法用得更多,但大多的材料只允许你对折射率进细微的调整。换言之,如果有什么装置可以控制光相位的变化,装置必须很长:如果折射率的变化幅度很小,你只能延长距离让相位改变。在整个长度上必须保持统一。

石墨烯

石墨烯

    有一个方法更好:大幅调整折射率。为了达到目标,光需要对电子形成强有力的反应。也就是说我们要用到导体,比如铝或者金。可惜的是光穿过金属时会反射,或者被吸收。

    只有一种情况例外,那就是光与金属中的电子结合,形成表面等离子体。在这种情况下,光与电子运动结合在一起,形成缓慢移动的波,它会沿着金属表面前进。如果你想计算一下折射率,根据传播速度的不同,折射率可以达到100(玻璃为1.3,大多数材料介于1-5)。

    等离子体的移动有一个关键:它的传播速度与移动的电子数量关切密切。

    石墨烯帮上大忙

    石墨烯就是单层碳原子排成蜂窝结构。因为存在上述挑战,石墨烯可以发挥作用。石墨烯是导体,可以支持表面等离子体传播。不过石墨烯并不是金属,它实际上是一种半导体,像硅一样。石墨烯与硅有一个不同的地方,那就是自由移动的电子与受到原子限制的电子之间的能隙;石墨烯的能隙基本上等于零,而硅约为1伏特。当我们将电场应用于石墨烯,额外能量会让更多的电子变成导电状态,这样就可以提高等离子体的移动速度。

    要让效果完全发挥出来,石墨烯不能受到外部世界的打扰。如果你只是在任意旧表面上覆盖一层石墨烯,表面等离子体会幅射到表面内,然后逃离出去。这样一来,你想调节相位,但是找不到可以调节的东西。研究的关键正在于此:科学家找到了一种惰性基片(氮化硼),我们可以用基片将石墨烯封装。成功将石墨烯装进氮化硼后,研究人员就可以生成表面等离子体,在移相装置的整个长度上传输时损耗很小。

    最终结果显示,装置的长度约为600nm,但是折射率介于80-160,允许入射光场移动一个完全的周期(也就是相位调整360度)。

    因为装置的“心脏”是石墨烯,光必须拥有更长的波长才能形成等离子体,所以我们这里说的是红外光,不是可见光。自由空间中的光波波长比整个移相装置长10倍,真是酷极了。

    你可能会感到奇怪,既然装置连一个波长都不到,你如何完成360度相位转移呢?答案是这样的:装置中的波长是等离子体的波长,而等离子体的波长更短,所以你可以将多个波长放进移相器。因为折射率接近100,波长也就会减少100。这样一来,整个装置的长度就会比等离子体的有效波长长很多。

    与天线有什么关系?

    我是从相控阵天线谈起的,通过调节每一个天线单元,我们可以对幅射的相位和振幅进行调节,从而控制幅射图的形状和方向。就目前而言,我们已经开发出有效的移相器,至少在红外领域做到了。装置并不笨重,相对比较强大。这是不是说红外相控阵天线即将出现?

    我想说“是的”,它已经出现在实验室中。在移动领域,5G允许我们调节天线幅射的形状,对方向进行控制,这样一来,在移动设备与固定天线之间就可以建立高容量连接。这是一个明显的信号,它告诉我们高容量连接需要对波束进行一定的控制。

    多年来,研究人员一直在考虑用自由空间光信号实现高容量数据连接。为了达成目标,我们要对多个激光束进行动态控制。如何做呢?你需要多元光天线,需要控制每一个发射器的相位与振幅。正因如此,这种技术不是无线的下一代,而是下一代的下一代技术。

责任编辑:陈彩霞

声明:本网站中,来源标明为“慧聪电子网”的文章,转载请标明出处。

欢迎投稿,邮箱:lijia03@hc360.com

友情链接

申请友情链接

赛迪网 RFID世界网电子信息产业网畅享网与非网电子产品世界慧聪智能硬件网慧聪电气网慧聪电源网慧聪IT网慧聪变频器网慧聪LED网慧聪芯城

慧聪电子网总部

北京市海淀区大钟寺东路9号京仪科技大厦B座2层

慧聪电子网分部

上海市普陀区中山北路3000号长城大厦5层

深圳市福田区深南中路2018号兴华大厦A座七楼

关于我们 | 加入我们 | 我要投稿
| 寻求报道 | 申请合作

Copyright?2000-2014 hc360.com. All Rights Reserved
京ICP证010051号 海淀公安局网络备案编号:11010802015485